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ABSTRACT 

In this paper we have studied several properties of the Julia sets for the complex polynomial of the form cz 2 . 

We have also discussed the stability nature of its fixed points and periodic points in some situations depending on the value 

of the parameter c .  
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1. INTRODUCTION 

Julia sets are amongst the most frequently pictured fractals, combining both aesthetic and actual beauty. The 

modern day interest in Julia sets and related mathematics began in the year 1920, which was initiated by French 

mathematician Gaston Julia. In 1918 he wrote a paper titled "M´emoire sur l’iteration des functions rationelles" (A Note 

on the Iteration of Rational Functions) [11] where he first introduced the modern idea of a Julia set. In this paper Julia gave 

a precise description of the set of those points of the complex plane whose orbits under the iteration of a rational function 

stayed bounded. Interest in the subject flourished over the next 10 years and many other well-known mathematicians like 

Harald Cramer began to study Julia set. Despite the lack of computing machine available at that time he was able to 

become the first man to approximate an image of a Julia set. Due to the lack of computing machine the progress of research 

in this line slowed down and after some years Julia's work was forgotten by the mathematical community. It was the 

France mathematician Benoit Mandelbrot who brought back Julia's work around 1977. With the aid of computer graphics 

he showed that Julia's work is a source of some of the most beautiful fractals known today. 

A very brief historical note will be useful to explain the role of iteration of rational maps on the complex plane 

which is the central theme of this paper. The study of iteration of maps begins with the Newton's method. In 1870's Cayley 

and Schröder independently studied Newton's method over the complex plane [7]. Julia's interest on iteration of maps 

apparently was motivated by the 1879 paper "The Newton-Fourier Imaginary Problem" by Sir Arthur Cayley [14]. Cayley 

was studying the equation 0)( 3  czzf , using the Newton- Fourier iterative method to find the roots. In this 

iterative method one can approach to a root as a limiting value for a certain starting value of z . Since there are three roots, 

Cayley tried to find out a method by which it can be ascertained to which of these three roots the iteration will converge for 

a given starting value of z . But he could not solve this problem. Over the following decades other mathematicians 
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continued to build on this work, but their work failed to create a general and global theory that could describe the behavior 

of all rational functions on the entire complex plane.  

In 1915 the French Academy of Sciences announced that it would award the 1918 Grand Prix des Sciences 

Mathematique for such a general and global theory. The two mathematicians who succeeded in creating the modern theory 

of complex dynamics were Gaston Julia and Pierre Fatou. Julia won the contest and Fatou, despite withdrawing his work 

from the contest, received a second prize. Both saw that iteration of any function partitioned the extended complex plane 

into a region where the iterates are equicontinuous and a region where they are not. Today, for any non-constant rational 

function f , the maximal open subsets of the extended complex plane on which the family of iterates of the function f , 

i.e.,  1: nf n  is equicontinuous is called Fatou set of f , denoted by F  or )( fF , while the complement of F  in 

the extended complex plane is called the Julia set of f , denoted by J  or )( fJ . This concept is the primary basis of this 

paper. 

With the arrival of modern sophisticated computers in 1980s the above mentioned intricate problem of course 

could be handled and the research in this area got momentum. Let us see little bit in detail the mathematical theory behind 

the above mentioned problem.  

Consider    
 zf
zf

zzF


 .  

Suppose 0z  be a root of  zf , i.e.   00 zf . Then we have   00 zzF  , which shows that 0z  is a fixed 

point of  zF .  

Thus, any complex number z is a root of   0zf  if and only if it is a fixed point of  zF . 

Now, if we consider   2

3

2

3

3
12

3
1

z
z

z
z

zzF





 . 

Then clearly the roots of  zf are the cube roots of unity, viz., 11 z , 3
2

2

i

ez


  and 3
4

3

i

ez


 . These are 

also attracting fixed point of  zF . Therefore, the problem of interest is now converted to find out the basin of attraction 

of these fixed points of  zF . Using a computer to graph this situation in the complex plane we get the image as shown in 

the figure 1.1. Here, the basin of attractions for 1z , 2z  and 3z  are colored respectively by blue, green and yellow. Note 

that the basin boundary in this figure is nothing but the Julia set for the function  zF . 
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Figure 1.1                      

 
   Figure 1.2 

With a similar fashion one can find the basin of attraction for the roots of the equation 014 z  as shown in 

the figure 1.2, where the region colored in blue, yellow, green and red are respective basin of attraction for the roots of 

 zf  or fixed points of  zF  which are 1, -1, i  and i . 

For fundamental work relevant to study of iteration of rational polynomials one may refer Beard on [1], Devaney 

[5, 6] and Steinmetz [18]. For computing Hausedorff dimension of the Julia sets one can see [2]. Julia set is a classical 

example of fractal, which has lots of application in medical science, study of weather system, biology, wireless 

communications etc. Interested readers can go through [10, 12] for finding such applications. Julia set which is a fractal is a 

great tool for animating the various aspect of world around us, it is used to animate feature films like 'Star Track-II' [12]. 

Moreover, for applications of Julia sets in wavelet analysis and in the study the large scale distribution of galaxies in the 

observed universe one can see [13] and [16] respectively.  

The rest of the paper is organized as follows. In section-2, we provide a review of preliminary concepts and 

definitions along with some examples to clarify those concepts and definitions. Section -3 and 4 deals with some 

dynamical and structural properties related to Julia set. In section 5 we have described about how to visualize the Julia set. 

Finally, we have given our conclusions in section 6.  

2. SOME PRELIMINARIES 

As discussions on Julia set involve the extended complex plane (that is infinity is included), we have given a brief 
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review of how it can be achieved. 

Stereographic Projection: Stereographic projection is a method to create a planar map of a sphere. In the figure 

given below, we draw a sphere of radius one whose south pole touches the complex plane at the origin. To each point of 

the sphere there is a corresponding point in the complex plane. To be specific, the ray from the North Pole through the 

point  zyx ,,  on the sphere will intersect the complex plane at a point denoted by ivu   enabling us to define a map as

   iyx
z

zyxP 



2

2,,
 
 

 

Figure 2.1: Stereographic Projection 

Hence, x
z

u



2

2
 and y

z
v




2
2

. 

The inverse of this transformation is given by 

   22
22

1 22,4,4
4

1 vuuv
vu

viuP 


 . 

Which gives the point  zyx ,,  on the sphere corresponding to the point viu  of the complex plane C  The z-

component of this inverse transformation is  

 
4

2
22

22





vu

vuz  

When viu   tends to infinity, i.e., 22 vu   goes without bounds the z-component tends to 2 since,

  2
4

2lim 22

22

22





 vu
vu

vu
 But, the only point on the sphere whose z-component is 2 is the North Pole i.e., the point

 2,0,0 . Hence, the North Pole can be regarded as the point at infinity. 
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In this way the extended complex plane can be considered as a sphere, called Riemannian sphere. We denote it by 

Ĉ  , i.e.,   CĈ . 

Let    be the metric on the Riemannian sphere which simply denote the length of the chord between any two 

points on the sphere. This metric is called spherical metric or the chordal metric, and for any two points Cwz ˆ,  , it is 

defined as 

22 11

2
),(

wz

wz
wz




   

When w , then
21

2),(
z

wz


  

With this metric Ĉ  is a compact metric space [14]. 

Consider an arbitrary polynomial CCf ˆˆ:  . Let nf  denote the nth iterate of f , that is , f  composed with 

itself n  times. For each point Cz ˆ
0 , we are interested in the behavior of the sequence 

      ,,,,,, 00
2

00  zfzfzfz n and in particular, what happens as n  goes to infinity. 

Now we review several definitions related to the iterations of rational functions which are relevant to carry our 

study. 

Definition 2.1: A function f  is called analytic in Ĉ  if its derivative exists at each point in Ĉ .  

Definition 2.2: A point Cz ˆ
0  is called critical point for the function f  if 0)( 0  zf . 

Definition 2.3: A point Cz ˆ
0  is called periodic point of f  if 00 )( zzf n   for some integer 1n . The 

smallest n  with this property is called the period of 0z . Thus, the periodic points of 0z  are the zeros of the function

000 )(),( zzffzF n  . 

A periodic point with period one is termed as fixed point of f  i.e., 0z  is a fixed point of f  it 00 )( zzf  . 

Definition 2.4: The multiplier (or Eigen value, derivative)   of a rational map f  iterated n  times, at the 

periodic point 0z  is defined as: 
















0

0

00

,
)(

1
),(

zif
zf

zifzf

n

n

  
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Where )( 0zf n  is the first derivative of nf  with respect to z  at 0z . 

Note that, the multiplier is same at all periodic points of a given orbit. Therefore it can be regarded as multiplier of 

the periodic orbit. 

The absolute value of the multiplier is called the stability index of the periodic point. It is used to check the 

stability of periodic points. 

Definition 2.5: A periodic point 0z  is called attracting periodic point if 1 , and is repelling if 1 . It is 

called indifferent when 1 . 

Example 2.1: Here we discuss the stability of periodic points of the function 3)( zzf  . The fixed points are 

zeros of 

0)(  zzf  

Which are found to be 1,1,0 321  zzz . Now, 23)( zzf  , so 10)( 1  zf , therefore, 01 z  

is a stable fixed point. Likewise, 12 z  and 13 z  are both unstable fixed points. 

To find the 2-periodic points we need to solve the equation; 

 0)(2  zzf  

The solutions to this equation are 01 z  and the eighth roots of unity which are 

765432 ,,,,,,,1   where, )1(
2

1
8

2sin
8

2cos ii 














 . 

Since we have, 

 (i)         9323 , fff  

 (ii)       21862262 ,   fff  

 (iii)       5217527155 ,   fff  

So, the 2-cycles are    623 ,,,   and 75 ,  . 

As 1,1,0 4
321  zzz  are fixed points of f  and we have already discussed their stability we 

consider the points 7,6,5,3,2,1: kk . 

Now,      199)( 8  kkk fff  . So each eighth root of unity is unstable. 

After clarifying the definitions with examples now we go back to the study of the maps of the form 
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 czzf c  2)(                                                                                                                                                      (1) 

For different values of the parameter Cc ˆ  the reason for choosing the above map is that every quadratic 

polynomial is linear conjugate to a map of this form and so it is representative of all quadratic polynomials. An important 

property of the Julia set of a rational function is that it is equal to the closure of its repelling periodic points. A rational 

function is defined as    
 xQ

xPxR   where  xP  and  xQ  is polynomials with roots distinct from each other. 

Every polynomial of the form 0
1

1 axaxa n
n

n
n  

   can be regarded as a rational function. Therefore, the 

conceptually easiest way to define Julia set is as follows:  

Definition 2.6: Let c be any complex number. The smallest closed set in the complex plane that contains all 

repelling fixed points and all repelling periodic points of the map czzf c  2)(  is called Julia set of the map cf , and 

it is denoted by cJ . 

For polynomials of dgree at least two,   is always an attacting fixed point in the light of our earlier discussion of 

stereographic projection. Some authors such as Goodson [9] use this fact to define the Julia set of polynomials as:  

Definition 2.7: The basin of attraction of   for the polynomial )(zf having degree at least two, is the open set 

  naszfCzB n
f )(:ˆ)( . 

Definition 2.8: The Julia set )( fJ of the polynomial )(zf  having dgree at least 2 , is the boundary of the 

open set )(fB  , i.e., the set )()(  ff BB . 

Definition 2.9 : The set )( fK of all those points of Ĉ  which do not converge to   under iteration of the 

polynomial )(zf  having degree at least two, is called the filled in Juia set of )(zf , i.e., 

)()(  fBCfK . 

Note that, the Julia set )( fJ  is also the boundary )( fK  of the set )( fK . Thus, for each  fJz 0  there 

is an open sphere  0zS r  with centre at 0z and radius 0r , there is a point  0zSu r  such that iterates of u  

under f  converge to infinity as well as another point  0zSv r  such that iterates of v  under f  do not converge to 

infinity. 

Definition 2.10: The complement of the Julia set )( fJ of the polynomial )(zf  is called the Fatou set. It is 

denoted by )( fF , i.e., )()( fJCfF  . 

Theorem 2.1: For any polynomial,   01
1

1 azazazazf n
n

n
n  

   ; 0na , there is a real 
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number r  such that if rz  , then   zzf 2 . Furthermore, the iterates of f  are either bounded or tends to 

infinity. 

Proof: Since 0na  we choose  1
4

 n

na
r . Thus, for rz   we have 

   1
4

 n

na
z  

 
n

n

a
z 41   2

2
1 1  n

n za  zza n
n 2

2
1

  

Now we can make r sufficiently large to ensure that when rz  ,
 

 

n
n

n
n zaazaza

2
1

01
1

1 
 

 

Thus 

 
  0

1
1 azazazf n

n
n

n  
 

 

   

 
 01

1
11 azazazaza n

n
n

n
n

n  
 

 

 

n
n

n
n zaza

2
1


 

zza n
n 2

2
1


 

Now, let us consider the set  Nnzf n :)(  of all iterates of f . 

If   rzf n   for all Nn   then clearly the iterates of f  are bounded.  

Otherwise, if   rzf m   for some Nm   then we have 

      zffzf kmkm 1   

  zf km 12   

  zf km 222   

   

  zf mk2  
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Thus,     rzfzf kmkkm 22  , so   zf k  as k  , i.e. the iterates of f  tends to 

infinity.  

3. SOME DYNAMICAL PROPERTIES RELATED TO THE JUIA SET 

In this section we discuss some dynamical properties of the Julia sets cJ  for different values of the parameter c .  

Let us start with  czzf c  2)(  where c  is an arbitrary fixed complex parameter. 

First we consider the case 0c  i.e., 2
0 )( zzf  .  

The fixed points of f0 are given by 

  zzf )(0  1,0.. zei  

As, zzf 2)(0  , 0z  is attracting and 1z  is repelling fixed points of 0f . 

Let irez 0 , then the orbit of 0z  under 0f  is given by: 

 irez 0  

 )2(2
1

ierz   

    

 )2(2 nn i
n erz   

Thus, the image of 0z  under 0f  is obtained by squaring the magnitude of 0z  and doubling the angle (argument ) 

of 0z  . Therefore, the behavior of the orbit of 0z  depends on its magnitude. 

If 1r , then 02 
n

r  as n , therefore, the orbit of 0z  will tend to the origin which is an attracting fixed 

point of 0f . 

If 1r , that is, if 0z  is on the unit circle 1z , then 12 
n

r , so the orbit of 0z  will remain on the unit circle 

and on each iteration 0f  will doubles the angle (argument) of 0z . 

If 1r , then 
n

r 2  as n , and so the orbit of 0z  will tends to , so the orbit in this case will be 

unbounded. This situation has been shown in the following cob-web diagram. 
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Figure 3.1: The Cob-Web Diagram for 0f  

Further, the following Table 1 gives the iterated values of 0z  under 0f  in each of the above mentioned situations. 

Table 3.1 

 Z0 Z1 = f0(z0) Z2 = f0(z1) Z3 = f0(z2) Z4 = f0(z3) Z5 = f0(z4) 
 

1z
 

Modulus 
= 0.8 
Argument 
= 10˚ 

Modulus 
= 0.64 
Argument 
= 20˚ 

Modulus 
= 0.4096 
Argument 
= 40˚ 

Modulus 
= 0.1678 
Argument 
= 80˚ 

Modulus 
= 0.0281 
Argument 
= 160˚ 

Modulus 
= 0.0008 
Argument 
= 320˚ 

 
1z

 

Modulus 
= 1 
Argument 
= 10˚ 

Modulus 
= 1 
Argument 
= 20˚ 

Modulus 
= 1 
Argument 
= 40˚ 

Modulus 
= 1 
Argument 
= 80˚ 

Modulus 
= 1 
Argument 
= 160˚ 

Modulus 
= 1 
Argument 
= 320˚ 

 
1z

 

Modulus 
r = 1.5 
Argument 
Θ = 50˚ 

Modulus 
= 2.25 
Argument 
= 100˚ 

Modulus 
= 5.06 
Argument 
= 200˚ 

Modulus 
= 25.6 
Argument 
= 40˚ 

Modulus 
= 655.36 
Argument 
= 80˚ 

Modulus 
=431440 
Argument 
= 160˚ 

 

The iteration of three initial points mentioned in the Table-1 is graphically represented in figure-4. 

 
Figure 3.2: Iteration of the Point 0z  under 0f  as Shown in Table-3.1 
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Since the doubling map on the unit circle is chaotic [4], 0f  is chaotic on the unit circle. This circle is the 

boundary between the set of initial points in the complex plane with itineraries that approaches the origin and those with 

itineraries that go to infinity. This separating curve (circle) is the Julia set of 0f  and clearly the interesting dynamics of 

0f  takes place on it. At this point it is noteworthy that although 0f  exhibits chaotic behaviour on its Julia set, its study 

may lead one to believe that Julia sets are nice smooth curves. In fact, a variation in the parameter c  give rise to quadratic 

maps whose Julia sets are fractals. Ruelle [17] has shown that for cf  with small c , the fractal dimension of its 

corresponding Julia set is approximately 

2log4
1

2c
dc   

And so is indeed a fractal in these cases. 

Next, it is to be noted that the fixed points of cf  are given by  

2
411 c

z


   

Clearly, number of fixed points will differ depending on 
4
1

c  or 
4
1

c   

Now, we discuss the nature of attracting and repelling fixed points of (1) through the following theorems: 

Theorem 3.1: 
4
1f  Have neither attracting nor repelling fixed points 

Proof: Fixed points of 
4
1f  is given by the quadratic equation: 

 zzf )(
4
1   0

4
12  zz

2
1,

2
1

 z  

Thus, the only fixed point of 
4
1f is at

2
1

z .  

Now, 1
2
1

4
1 






f , which shows that 

2
1

z  is indifferent fixed point of 
4
1f  . 

Therefore, 
4
1f  has neither attracting nor repelling fixed point. ■ 

Theorem 3.2: If
4
1

c , then at least one fixed point of cf  is repelling. 
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Proof: Fixed points of cf  is given by the quadratic equation: 

 zzf c )(   zcz  2  

Thus, the fixed points of (1) are the roots 1z  and 2z  of the quadratic equation 

 02  czz  And therefore, cz 41
2
1

2
1

1   and cz 41
2
1

2
1

2  .  

From this it is clear that for
4
1

c , cf  has two distinct fixed points viz., 1z  and 2z  . 

Now zzf c 2)(  , therefore, 

   1411)( 11 czf c , and   1411)( 22 czf c ,  

Where c41   

As 
4
1

c  , 0 .  

Consider the unit circle 

 2z    (2) 

Two cases might arise in case of position of a point with respect to the circle (2) depending on the value of   

which are discussed below: 

Case 1: When   lies outside the circle (2). 

In this case both the distances of   and   from 1 are greater than unity, i.e. 

  11    And 11    

 12    And 11   

Therefore, both 1z  and 2z  are repelling fixed point of (1) 

Case 2: When   lies inside or on the circle (2).  

In this case, as 0  at least one of the distances of   or   from 1 is greater than the unity, i.e. at least one 

of 1  or 1  is greater than one. Therefore, at least one of 1z  or 2z  is repelling fixed point of (1). ■ 

Theorem 3.3: 
4
1)( 2

4
1  zzf  has repelling 2-cycles. 
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Proof: It is already shown in theorem 3.1 that the only fixed point of )(
4
1 zf  is 

2
1

z  which is neither attracting 

nor repelling.  

Now the 2-cycles of 
4
1f  are given by  

  zzf )(2

4
1 zz 






 

4
1

4
1 2

2 0
16
5

2
1 24  zzz  (3) 

Since 
2
1

 is fixed point of )(
4
1 zf , it is also a fixed point of )(2

4
1 zf  and therefore, 






 

2
1z  is a factor of left 

hand side of (3). On factorization we get from (3); 

 0
8
5

4
3

2
1

2
1 23 






 





  zzzz  

It turns out that 





 

2
1z  are again a factor of 

8
5

4
3

2
1 23  zzz  , i.e. 

2
1

 is a double root of the 

equation (3), which leads to the following factorization: 

 0
4
5

2
1 2

2







 






  zzz  

By solving, iz 
2
1,

2
1

 Therefore, the fixed points of )(2

4
1 zf  are ,

2
1,

2
1 i and i

2
1

. But, 

neither i
2
1

 nor i
2
1

 is a fixed point of )(
4
1 zf , this leads us to conclude that 







  ii

2
1,

2
1

 is a 2-

cycle of )(
4
1 zf . 

To show this 2-cycle is repelling we first find the multiplier   and then use the definition 1.5 as follows: 

 





 










 if

2
12

4
1 






 















  ififf

2
1

2
1

4
1

4
1

4
1  

  





 







  ifif

2
1

2
1

4
1

4
1  ; Since, iif 






 

2
1

2
1

4
1  

  





 






  ii

2
12.

2
12  ; As,   zzf 2

4
1   



112                                                                                                                           Arun Mahanta, Hemanta Kr. Sarmah, Ranu Paul & Gautam Choudhury 

 
Impact Factor (JCC): 2.0346                                                                                                                     NAAS Rating 3.19 

    ii 2121   5  

As 1 , the 2-cycle 






  ii

2
1,

2
1

 is repelling. ■ 

4. SOME PROPERTIES RELATED TO THE STRUCTURE OF JULIA SETS 

In this section we will prove some results relating to the structure of Julia sets.  

Property 4.1: For every complex number c , the Julia set of cf  is non-empty. 

Proof: By theorem 3.2, for
4
1

c , cf  has a repelling fixed point and by theorem 3.3, for
4
1

c , cf  has a 

repelling period-2 cycle. As, )( cfJ  i.e. Julia set of cf  is the closer of the set of all repelling periodic points of cf  

hence   cfJ . ■ 

Property 4.2: If 1 cz  , then the orbit of z  for cf  is unbounded. 

Proof: When 0c , the iterates of z  are just positive powers of z  as 2
0 )( zzf  , which is clearly unbounded 

for 1z . 

Suppose, 0c  and 1 cz , then 

   czzf c  2

z
czz   

z
c

zz   

 
1

1



c

c
cz  














1
1

c
c

cz  zr  

Where, 1
1

1 













c
c

cr  as 
1


c

c
c   

It follows that    zrzf nn
c as n  increases without bound. Therefore if 1 cz , then the 

iterates of z  form an increasing, unbounded sequence, so the orbit of z  is unbounded. ■ 

Definition 4.1: A set S  is called invariant under the function f  if   SSf   i.e. the image of S  under f  

is contained in S .  

Property 4.3: The Julia set J of any complex polynomial f  is completely invariant under f . That is, 

][][ 1 JfJfJ  .  



Julia Set and Some of its Properties                                                                                                                                                                                   113 

 
www.iaset.us                                                                                                                                                     editor@iaset.us 

Proof: Suppose, 

 ))(()(1 zffzfJz kk    Not tends to infinity as k  

Recall that J  is the boundary of the basin of attraction of infinity and z  is a repelling point of f . 

As f  is continuous at z , we can find zun   such that 

 ))(()(1
n

k
n

k uffuf   Tends to infinity as k  for all n  

Therefore, )( zf  is not on the basin of attraction of infinity and we can find points )( nuf as close to )(zf  

as we wish such that )( nuf are on the basin of attraction of infinity. From which one can conclude that  

 Jzf )(                                                                               (4.3.1) 

This implies that  

 JJf ][                                                                               (4.3.2) 

Next consider the pre-image 0z  of z  i.e. zzf )( 0 . By mapping properties of f , we may find 0zvn   with

nn uvf )( . 

 )()( 1
0 zfzf kk   Not tends to infinity as k  

 And )()( 1
n

k
n

k ufvf  tends to infinity as k  for all n  

Hence ][)( 00 JfzfzJz                                                                            (4.3.3) 

 ][ JfJ                                                                                             (4.3.4) 

(4.3.2) and (4.3.4) implies that  

 ][ JfJ                                                                                                                         (4.3.5) 

From (4.3.1) 

 ][1 Jfz   And therefore, ][1 JfJ                                                                                                   (4.3.6) 

From (4.3.3) 

 Jzf  )(1  And therefore, JJf  ][1
                                                                                                  (4.3.7) 

(4.3.6) and (4.3.7) implies that  

 ][1 JfJ                                                                                                                                                      (4.3.8) 

(4.3.5) and (4.3.8) together constitute the result. ■ 
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Property 4.4: The orbit of  cfJz   is bounded. 

Proof: Let  cfJz  . Now if z  is a periodic point of cf , then necessarily the orbit of z  is bounded and 

therefore by property 4.2, 1 cz . Again  cfJ  is the smallest closed set containing all repelling periodic points 

of cf , therefore, any  cfJz   also has the property that 1 cz . Now by property 4.3, the iterates of  cfJ  

are precisely  cfJ . Hence the iterates of z are also bounded by 1c . ■ 

Proposition 4.5: The Julia set cJ  of the function cf  is compact for all Cc ˆ . 

Proof: By theorem 1.1, there exist a real number r  such that for rz  , 

  zzf c 2  

Thus, for rz  ,   zf n
c  as n  Since, Julia set cJ  of cf  is the boundary of the set of those 

points of Ĉ  which do not converge to   under iteration of cf , so we must have 

  0rc SJ   I.e. the sphere of radius r  and centre at origin 

 rz   For all cJz   

Which shows that cJ  is bounded. 

Next we need to show that cJ  is closed. 

Let   Bz , the basin of attraction of   under cf . Therefore, there exist Nk   such that   rzf k
c   . 

Thus, to each   Bz , there exist an open sphere  zS  such that 

       zfzSz k
  As k  

   Bz  

Therefore,     BzSz   which shows that  B  is an open set. 

Now as    cfKCB  ˆ , so the filled in Julia set  cfK  is closed. Again the boundary of  cfK  

is the Julia set cJ  we have that cJ  is closed. 

Hence cJ  is compact. ■ 

Proposition 4.6: cJ  is symmetric about the origin for all C  c . 
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Proof: Suppose co Jz  . By invariant property of Julia set it is clear that 

cc Jzf )( 0 cJcz  2
0  cc Jczf   )( 2

0
1    cJzz  00 , cJz  0  

 Hence the Julia set cJ  of cf  is symmetric about the origin. ■ 

Proposition 4.7: For any real values of c , the Julia set cJ  is symmetric about both real and imaginary axes. 

Proof: Recall that any set CS   is symmetric about the real axis if the conjugate of each element of S  

belongs to the set S  i.e. SzSz 
_

. We first show that
________

)()( zfzf n
c

n
c  . 

Let 111 biaz   

Now, 2211
2

1
2

11 2)( biaibacbazf c  (say) 

 
_________

12211
2

1
2

1

_
)(2)( zfbiaibacbazf cc   

Suppose 
___________

1
1

_

1
1 )()( zfzf r

c
r

c
   and rr

r
c biazf  )( 1

1  

Now, 





  )()(

__

1
1

__

1 zffzf r
cc

r
c  








 

__________

1
1 )(zff r

cc ibacba rrrr 222   
__________

1 )( zf r
c  

Thus, by induction, 

 
___________

)( zfzf n
c

n
c 








 For all Nn  

Now suppose, 

 cKz  , the filled in Julia set of cf  

   
 1)( n

n
c zf  Is bounded 

 










1

________

)(
n

n
c zf  Is bounded 

 









1

__
)(

n

n
c zf  Is bounded cKz 

__
 

Thus cK  and hence its boundary cJ is also symmetric about the real axis. 

Symmetry of cJ  about the imaginary axis immediately follows from the fact that it is symmetric about the real 



116                                                                                                                           Arun Mahanta, Hemanta Kr. Sarmah, Ranu Paul & Gautam Choudhury 

 
Impact Factor (JCC): 2.0346                                                                                                                     NAAS Rating 3.19 

axis as well as the origin. ■ 

5. VISUALIZING JULIA SETS 

To see how one can plot Julia sets, one will look at the simplest method called "The escape criterion method", 

which generates the filled in Julia sets. Julia sets do not have interiors; however, this method often ends up plotting the 

interior along with the Julia set. This method is based on the following facts:  

At each step of iteration of the map czzfc  2)( , geometrically we square the modulus and double the angle 

of the number to which it operates and then shift by the parameter c . If c  is small the squaring part dominates the shift so 

the behavior is not very different from the case 0c , discussed above. Just as this case, two types of behavior are 

possible depending on the starting point (seed). The first type of points lie in the basin of attraction of the fixed points or 

the attracting cycles and the orbits of the second type tend to infinity. The Julia set separates these two very different types 

of behavior. If a point is in the Julia set, there are arbitrarily close points that iterates to infinity but also arbitrarily close 

points that do not wander far off under iteration. So, our first method for plotting the Julia set is to color points with a color 

if their orbits tend to infinity and to color them by another one ( contrasting to the first color) if they do not. The boundary 

between these two regions is then the Julia set. 

Now, our problem is converted to find out those points whose orbits tend to infinity which is tackled by the 

following theorem: 

Theorem 5.1: If 2c , Then the orbit of the points lie outside the circle of radius 2 i.e. the set of points

 2: zz , escape to infinity. 

Proof: Let  2:  zzE  . Then for any Ez  we have, 

  cz    

Now, czcczcz  222  

  czcz  22  czzz  22  

Replacing c  by c , 

     zfczzz c 21   

Since 2z , therefore, 11 z  and hence one can write  11z  where 0 . 

   )(1 zfzz c   

Thus, z  will move further from origin by the action of cf  
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Again,            zzfzffzf cccc
22 11    

Therefore,  zf c
2  is even further from the origin than  zf c . 

Continuing in this fashion, one can find 

     zzf nn
c  1  

Recall that 0 , so that 11   . Hence the number    n1  as n  so it follows that 

  zf n
c  as n  i.e. the orbit of z  tend to infinity. ■ 

In view of the above theorem the algorithms that produce the Julia sets shown in the figure 5.1 and 5.2 is as 

follows: 

 Step 1: 

Input 1c  and 2c  where 21 cicc   

Step 2: 

Select a 200200   grid in the plane. 

Step 3: 

For each point 0z  in this grid, compute the first 20  points on the orbit of 0z . Check at each point of the iteration 

whether the corresponding iterated value lies outside the circle of radius 2 . 

Step 4: 

If any point on the orbit lies outside the circle of radius 2 , then stop iteration and color the point 0z  by purple 

color. 

Step 5: 

If all 20points on the orbit lie outside the circle of radius 2 , then keep the original point 0z  without any color 

(i.e. keep it white) 
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(a)                                                                        (b)                                       (c) 

 

 
(d)     (e)     (f) 

 
(g)     (h)     (i) 

Figure 5.1: Filled in Julia Set for the Parameter (c) Values 
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1)(,7.0)(,5.0)(,9.0)(,8.0)(,65.0)(,4.0)(,25.0)(,1.0)(  ihgfedcba ) 

 
(j)     (k)     (l) 

   
(m)      (n)     (o) 

 
(p)     (q)      (r) 

Figure 5.2: Filled in Julia Set for the Parameter (c) Values 
iriqipioinimlkj 9.10.0)(,75.01.0)(,5.01.0)(,)(,5.0)(,3.0)(,9.1)(,5.1)(,25.1)(  ). 
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Though this method gives beautiful pictures of Julia sets, it actually gives the interior together with the Julia sets 

i.e. filled in Julia sets instead of showing the actual Julia sets alone. Another disadvantage of the algorithm is that it takes 

more computational time. To overcome these disadvantages, there are various computation methods for visualizing Julia 

sets in computer screen such as Boundary Scanning Method (BSM), Inverse Iteration Method (IIM), and Modified Inverse 

Iteration Method (MIIM) etc. These methods are explained and compared in [8], [19] and [3]. Among these MIIM is the 

best method for both computation time and remarkable picture quality. This method is discussed in detailed by Peitgen and 

Richter [15]. The algorithm for this method is as follows: 

Step 1:  

Choose any real number c  such that 22  c . 

Step 2:  

Find any repelling point 0x  of cf  as the starting point and set  00 xS  . 

Step 3:  

Choose the number of iteration, say n  . 

Step 4:  

Find the image of 0S  under 1g  and 2g  where   czzg 1 , and   czzg 2   

Step 5:  

Set    02011 SgSgS  . 

Step 6:  

Find the image of 01 SS   under 1g  and 2g  and set    0120112 SSgSSgS  . 

Step 7:  

Repeat the process for n  times and finally get    212211   nnnnn SSgSSgS  

Step 8:  

The set 
n

i
iS

0

 will give the Julia set for cf  approximately. 

Using this algorithm Julia sets for the parameter value ,55.05.0,745.0123.0,1 icicc   

ic 3.04.0   And ic  are drawn which are shown in the figure 5.3 below: 
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(a)         (b) 

 
(c)                                         (d) 

 
(e) 

Figure 5.3: Julia Sets for the Parameter (c) Values 

(a) 1 , (b) i745.0123.0  , (c) i55.05.0  , (d) i3.04.0   (e) i  

6. CONCLUSIONS 

For all parameter values c  such that 25.0c , effect of shift by c  does not change the picture of the 

respective Julia set much. In this case the Julia set is a quasi circle or a loop. As soon as the magnitude of c  increases the 

shifting part of the function become significant, its picture becomes strange. For example, the Julia set for the parameter 

value 1c  consists of a central loop surrounded by many smaller touching loops which in turn are surrounded by even 
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smaller loops, and so on, see figure 5.3(a). Moreover, the Julia set for the parameter value c  close to 1  has a similar 

structure of touching loops i.e. the configuration is stable for 1c  . The sets for other parameter values yields more 

surprises. For c  close to i745.0123.0   the Julia set is again formed by a hierarchy of loops, but now they meet three 

at a point as shown in figure 5.3(b). For this case cf  has an attracting period-3 orbit. Further, increasing the value of c  

nearer to i55.05.0  , the loops meet five at a point, figure 5.3(c). Again, choosing the value of c  as i , the loops 

collapse and the Julia set takes a dendrite or 'twig-like' shape, see figure 5.3(e). As the value of c becomes larger a 

dramatic change in the nature of the Julia set takes place. For example, when ic 3.04.0   the connectedness of the 

Julia set completely breaks up and it become a totally disconnected one, figure 8(d). In this situation, the Julia set becomes 

a fractal dust and is identical to the filled in Julia set. Any point not in the Julia set of this type iterates to infinity, as no 

other destination is possible. 
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